Lower limit topology

In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set R of real numbers; it is different from the standard topology on R and has a number of interesting properties. It is the topology generated by the basis of all half-open intervals [a,b), where a and b are real numbers.

The resulting topological space, sometimes written Rl and called the Sorgenfrey line after Robert Sorgenfrey, often serves as a useful counterexample in general topology, like the Cantor set and the long line. The product of Rl with itself is also a useful counterexample, known as the Sorgenfrey plane.

In complete analogy, one can also define the upper limit topology, or left half-open interval topology.

Properties

References